Around the World with BIM

Around the World with BIM

(The content of this article is based on data collected from wiki and other sources as on 11.12.2015) There is no doubt that BIM adoption in the AEC industry has come a long way since the term was introduced in 2002 as most of the larger firms are using BIM on many of their projects, and it has come part of the standard lexicon of the AEC industry. We would be hard-pressed to find anyone working in the industry who has not heard of BIM. But most of us have a rather myopic view of BIM, quite naturally so; we are aware of what’s going on with BIM implementation in our own countries, but not that much about what is happening in other countries. We are all aware that the pace of globalization is rapidly increasing, so it is helpful to stay informed about technological developments elsewhere and be better prepared in case they also have an impact on us. Following are the development in BIM around the world


The main organization governing the construction industry in Singapore is the BCA (Building and Construction Authority). Singapore was one of the earliest countries to realize the potential of model-based design, and this was before the term BIM was even introduced. As early in the 1990s, Singapore had a CORENET project, which was a system for automatically code-checking a design. This, of course, could only be done for a building that was represented using a model rather than drawings.

Singapore, and the BCA has a roadmap for BIM that pushes its construction industry to be using BIM widely by 2015. While the BCA is not going so far as to mandate the blanket use of BIM on all building projects, it does have various strategies for promoting it as outlined in a roadmap. These include developing BIM submission templates to ease the transition for the industry from CAD to BIM—architectural and structural templates were introduced in 2010, while the M&E template was introduced in April last year. In collaboration with building SMART Singapore, BCA is developing a library of building and design objects, as well as project collaboration guidelines. To incentivize early BIM adopters, it introduced an S$6-million BIM Fund in June 2010 to covers costs on training, consultancy, software, and hardware. An important part of the roadmap is also to encourage Singapore universities to offer courses of BIM, and organize BIM workshops and seminars regularly. While there was surprisingly no mention of CORENET in BCA’s roadmap, it does call for mandatory regulatory submissions using BIM starting in 2013. The BCA is also working with Singapore’s public sector agencies to specify BIM requirements for all new public sector building projects.


China operates upon a series of five-year plans, each of which lists the social and economic development initiatives that are considered most critical for the development of the country during that time period. The first plan period was from 1953 to 1957; the eleventh ran from 2006 to 2010. Thus, we are currently in the middle of the twelfth five-year plan period, which runs from 2011 to 2015. While the plan lists several initiatives to rebalance China’s economy, shift development from urban and coastal areas toward rural and inland areas, enhance environmental protection, and accelerate openness and reform, one of the key construction-related initiatives in China’s twelfth five-year plan is energy-efficient buildings, which ties in with the overall goal of sustainability. This, in turn, is absolutely critical to China, given that it has the world’s largest population and its economy is developing rapidly, putting a severe strain on its existing finite resources.

UK (United Kingdom)

In contrast to most countries, the UK Government has actually mandated the use of BIM. In May 2011, the UK Cabinet Office published a “Government Construction Strategy” document that has an entire section on “Building Information Modeling,” within which it specifies that Government will require fully collaborative 3D BIM as a minimum by 2016. The document also acknowledges that the lack of compatible systems, standards and protocols, and the differing requirements of clients and lead designers, have inhibited widespread adoption of BIM, a technology which has the capacity to ensure that all team members are working from the same data. Therefore, the government will also focus on developing the standards that will enable all members of the supply chain to work collaboratively through BIM.

This government mandate for the use of BIM is supported by an AEC (UK) BIM Standard Committee that has, to date, released the AEC (UK) BIM Standard (in Nov 2009), the AEC (UK) BIM Standard for Revit (in June 2010), and the AEC (UK) BIM Standard for Bentley Products (in Sep 2011). It is working on similar standards for other BIM applications such as ArchiCAD and Vectorworks, as well as updated versions of the standards that have already been published. All these standards aim to provide practical protocols and procedures to AEC firms in the UK for transitioning from CAD to BIM; for example, what to name models, what to name objects, modeling of individual components, data exchange with other applications or disciplines, and so on. The product-specific standards are intended to interpret and expand the concepts in the generic standards with specific reference to that particular BIM application, for example, using worksets, linked models, families, parameters, and so on in Revit. The committee members writing these standards include AEC professionals that are using BIM in their day-to-day work, so the standards are not simply theoretical but can actually be applied when implementing BIM.

AEC firms in the UK are already quite advanced in their BIM implementation, with London being home to many of the leading firms in the world such as Foster and Partners, Zaha Hadid Architects, BDP, and ArupSport, as well as the European headquarters of firms such as HOK, SOM, and Gensler, all of which are well known for their cutting-edge use of AEC technology. In such a milieu, a government-issued mandate for BIM can only thrive and bring the rest of the AEC firms in the UK more rapidly up to speed compared to the average AEC firm located elsewhere in the world.

Nordic Countries (Norway, Denmark, Sweden, and Finland)

The Nordic countries of Norway, Denmark, Sweden, and Finland are home to some key AEC technology vendors such as Tekla and Solibri, and also rank high in the adoption of ArchiCAD that originated from neighboring Hungary. As a result, these countries were among the earliest to adopt model-based design, and also pushed for interoperability and open standards in AEC technology, embodied primarily by the IFC. The long snowy winters in these countries made prefabrication in buildings very important, which in turn is greatly facilitated by the data-rich, model-based, BIM technology, resulting in the early deployment of BIM in these countries. (Please see the AECbytes article from 2005, Prefabrication of Timber Buildings based on Digital Models: A Perspective from Norway).

Thus, while these is no official government mandate on the use of BIM in these countries, it seems to have grown on its own in response to the need of AEC firms for a more advanced technology than drawing-based CAD files for designing and constructing the kind of buildings that were needed in this region.

USA (United States of America)

In the US, the official use of BIM is synonymous with the GSA’s BIM initiatives. The GSA (General Services Administration) is responsible for the construction and operation of all federal facilities in the US, and in 2003, it established a National 3D-4D-BIM program through the Office of the Chief Architect of its Public Buildings Service. Thus, the GSA is not only endorsing BIM, but also the application of 3D and 4D technologies as a transition from 2D technologies. It recognizes that a 3D geometric representation is only part of the BIM concept, and not all 3D models (for example, those created in 3D modeling applications like form.Z, 3dsMax, and even SketchUp) qualify as BIM models. Yet, even 3D models are much better at communicating design concepts than 2D drawings, so if BIM cannot be implemented on a project, at least 3D modeling technologies should be used on it. 4D is where the added dimension of time is added to a 3D model, which is most useful for construction sequencing and scheduling. A 4D model can be created from any 3D model—it does not have to be a BIM model. Thus, the GSA is taking a more pragmatic approach to its building projects, recognizing that it may not be able to commission firms that are BIM experts for all of them, so it is encouraging the use of 3D and 4D technologies that are at least more advanced than drawing-based 2D technologies.

The GSA, however, has mandated the use of BIM for spatial program validation to be submitted prior to final concept presentation on all its projects starting from 2007. This allows the GSA design teams to validate spatial program requirements such as required spaces, areas, efficiency ratios, and so on more accurately and quickly than traditional 2D approaches. As it owns over 300 million square feet of space, this concept design stage validation helps the GSA to better manage it over the long term. The GSA has provided more details about how to create this Spatial Program Validation BIM for its projects in a special Guide that is available on its website. This is one of a series of guides that the GSA has made available for different aspects of its 3D-4D-BIM program such as laser scanning, energy performance, circulation, facility management, and so on.

In the US, the GSA is a very active presence in AEC technology conferences such as the AIA-TAP, and its projects are frequently nominated in the annual AIA BIM Awards. Therefore, its strong advocacy of BIM is bound to influence the entire AEC industry in the US and enhance its overall technology adoption.

Hong Kong

The Hong Kong Institute of Building Information Modeling (HKIBIM) was established in 2009. The Hong Kong Housing Authority set a target of full BIM implementation in 2014/2015. BuildingSmart Hong Kong was inaugurated in Hong Kong SAR in late April 2013.


In India BIM is also known as VDC: virtual design and construction. India is an emerging market with an expanding construction market and huge potential for large scale residential and commercial development (because of population and economic growth). It has many qualified, trained and experienced BIM professionals who are implementing this technology in Indian construction projects and also assisting teams in the USA, Australia, UK, Middle East, Singapore and North Africa to design and deliver construction projects using BIM. In spite of this, and India's vibrant building sector, BIM usage was reported by only 22% of respondents to a 2014 survey.


The Iran Building Information Modeling Association (IBIMA) shares knowledge resources to support construction engineering management decision-making. It was founded in 2012 by professional engineers from five universities in Iran, including the Civil and Environmental Engineering Department at Amirkabir University of Technology.

South Korea

Small BIM-related seminars and independent BIM effort existed in South Korea even in the 1990s. However, it was not until the late 2000s that the Korean industry paid attention to BIM. The first industry-level BIM conference was held in April, 2008, after which, BIM has been spread very rapidly. Since 2010, the Korean government has been gradually increasing the scope of BIM-mandated projects. McGraw Hill published a detailed report in 2012 on the status of BIM adoption and implementation in South Korea.

Czech Republic

Czech BIM Council


In France, examples of organisation promoting the use of BIM include the FFB (Fédération Française du Bâtiment), and the French arm of building SMART.


Hungarian BIM Council


Lithuania is moving towards adoption of BIM infrastructure by founding a public body "Skaitmeninė statyba" (Digital Construction), which is managed by 13 associations. Also there is a BIM work group established by Lietuvos Architektu Sajunga (a Lithuanian architects body). The initiative intends Lithuania to adopt BIM (Building Information Modelling), Industry Foundation Classes (IFC) and National Construction Classification as standard. An international conference "Skaitmeninė statyba Lietuvoje" (Digital Construction in Lithuania) has been held annually since 2012.


A July 2015 meeting at Spain’s Ministry of Infrastructure [Ministerio de Fomento] launched the country’s national BIM strategy, making BIM a mandatory requirement on public sector projects with a possible starting date of 2018.


In Switzerland, ETH Zurich University has taught CAD and digital architecture since 1992 through Prof. Dr. Schmitt. Since 2009 through the initiative of building Smart Switzerland, then 2013, BIM awareness among a broader community of engineers and architects was raised due to the open competition for Basel's Felix Platter Hospital where a BIM coordinator was sought. BIM has also been a subject of events by the Swiss Society for Engineers and Architects, SIA.

The Netherlands

On 1 November 2011, the Rijksgebouwendienst, the agency within the Dutch Ministry of Housing, Spatial Planning and the Environment that manages government buildings, introduced the RGD BIMnorm, which it updated on 1 July 2012.


Two organizations are supporting the BIM adoption and implementation process in Canada: the Institute for BIM in Canada (IBC, for which buildingSMART Canada is the project delivery arm) and the Canada BIM Council. .

IBC is the authoritative voice for BIM in Canada. The mission of the IBC is to lead and facilitate the coordinated use of Building Information Modeling (BIM) in the design, construction and management of the Canadian built environment.” Its founding partner organizations represent specific industry sectors with keen interest in seeing BIM implemented in a way, and at a pace, that enables the primary stakeholders to understand their roles and responsibilities and to assess their capacity to participate in this process. .

buildingSMART Canada, the Canadian chapter of buildingSMART International, works in partnership with all Canadian AECOO community stakeholders including Canadian associations of architects, engineers, specification writers, contractors as well as public and private owners, government and industry. It creates standards and supports programmes and tools to ensure that Canada will be successful in its movement towards a better built environment supported through open and internationally compatible standards for BIM. .

Founded in December 2008, the Canada BIM Council is a consensus- and committee-driven organization for BIM in Canada developed by business leaders to standardize the use of models in architecture, engineering and construction.


BIM has the potential to play a vital role in the Nigerian AEC sector. In addition to its potential clarity and transparency it may help promote standardization across the industry. For instance, Utiome suggests that, in conceptualizing a BIM-based knowledge transfer framework from industrialized economies to urban construction projects in developing nations, generic BIM objects can benefit from rich building information within specification parameters in product libraries, and used for efficient, streamlined design and construction. Similarly, an assessment of the current 'state of the art' by Kori found that medium and large firms were leading the

New Zealand

In 2015, many projects in the rebuilding of Christchurch were being assembled in detail on a computer using BIM well before workers set foot on the site. The New Zealand government started a BIM acceleration committee, as part of a productivity partnership with the goal of 20 per cent more efficiency in the construction industry by 2020.
  © CADSoft Technologies,Unit No. 256, 2nd Floor, B2, Spaze iTech Park, Sec-49, Sohna Road, Gurgaon, Haryana 122001  
Call us!
Get Social with us!

To Subscribe for monthly Newsletter, please click here